Abstract

Denitrifying anaerobic methane oxidation (DAMO) process uses methane as electron donor to reduce nitrate/nitrite to dinitrogen, which is a potentially efficient, low-cost and clean biological nitrogen removal technology. However, slow microbial growth rate severely limits the application of this promising process. In this study, a series hollow-fiber membrane biofilm reactor (HfMBR) was operated for 90 days to achieve rapid enrichment of these denitrifying methanotrophs. Finally, the highest relative abundance of denitrifying methanotrophic archaea and bacteria (DAMO archaea and bacteria) reached 47.5% and 11.3%, respectively. And the average abundance of DAMO archaea and bacteria increased 92.9 and 136.6 times respectively during the 90-day enrichment. High growth rate of DAMO archaea with a doubling time of 11.6 days was achieved in the second HfMBR according to quantitative PCR results. The results implied that dissolved oxygen would inhibit the growth of DAMO archaea, but the series HfMBR could effectively counteract this unfavorable factor. This work provided theoretical guidance for the rapid enrichment of denitrifying methanotrophs and contributed to the application of methane-dependent denitrification process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call