Abstract

For a rapid enrichment and separation of minor components from Malus hupehensis, the selection of suitable solvent system is the great challenge for liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography. According to the concept of "like dissolves like," the similarity of the average polarity between solvent system and target compounds was the significant characteristic of liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography separation. The polarity parameter model provides a way to calculate the polarity of unknown compounds. Under the guidance of the polarity, an efficient enrichment and separation approach was established through liquid-liquid extraction and high-speed counter-current chromatography with solvent systems composed of n-hexane-ethyl acetate-acetonitrile-water (5:3:5:7, v/v), n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v), respectively. Thus, the total content of minor compounds was increased from 2.6% to 17.2%, and two novel compounds (6´´-O-coumaroyl-2´-O-glucopyranosylphloretin and 3´´´-methoxy-6´´-O-feruloy-2´-glucopyranosylphloretin) were obtained. The discovery of the new dihydrochalcones expanded the structural diversity of compounds produced by the genus Malus. The experimental results demonstrated that compound polarity can be described by the polarity parameter model and is an important reference for investigating optimum solvent systems for liquid-liquid extraction with a three-phase solvent system and high-speed counter-current chromatography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call