Abstract
Agrobacterium-mediated transient gene expression have become a method of choice over stable plant genetic transformation. Tocopherols are a family of vitamin E compounds, which are categorized along with tocotrienols occurring naturally in vegetable oils, nuts and leafy green vegetables. This is the first report involving AtTC and AtHPT transient expression in Nicotiana benthamiana and this system can be used efficiently for large scale production of vitamin E. Agroinfiltration studies were carried out in N.benthamiana for the expression of Arabidopsis thaliana (At) genes encoding homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) individually and in combination (HPT + TC). The transgene presence was analyzed by reverse transcription PCR, which showed the presence of both the vitamin E biosynthetic pathway genes. The gene expression analysis was carried out by (reverse transcription quantitative real-time polymerase chain reaction) RT-qPCR and α-tocopherol content was quantified using high performance liquid chromatography (HPLC). The relative gene expression analysis by RT-qPCR confirmed an increased expression pattern where TC + HPT combination recorded the highest of 231 fold, followed by TC gene with 186 fold, whereas the HPT gene recorded 178 fold. The α-tocopherol content in leaves expressing HPT, TC, and HPT + TC was increased by 4.2, 5.9 and 11.3 fold, respectively, as compared to the control. These results indicate that the transient expression of HPT and TC genes has enhanced the vitamin E levels and stable expression of both A. thaliana genes could be an efficient strategy to enhance vitamin E biosynthesis in agricultural crop breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.