Abstract
The cytokine interleukin 2 (IL2) is produced by activated helper T lymphocytes and modulates the growth and activity of cells expressing high-affinity surface IL2 receptors that transduce its signaling. After ligand binding to receptors on the plasma membrane, receptor-ligand complexes are rapidly endocytosed and IL2 is degraded in acidic compartments. The best known receptor-mediated endocytosis pathway involves clathrin-coated pits. Receptors that carry an internalization signal recognized by adaptors on the cytosolic side of the plasma membrane are clustered into the coated pits and enter cells very efficiently. Many receptors use this pathway, but other endocytic pathways have also been reported, for ricin, EGF and insulin, for instance, which seem to be less efficient than the coated one. We compared the endocytosis of IL2 and its receptors to that of transferrin, a marker of the coated pit pathway. Under normal conditions, the kinetics of entry of IL2 was two times slower than that of transferrin. When internalization via coated pits was inhibited by two different methods, potassium depletion and cytosol acidification, endocytosis of IL2 and its receptors was only partly inhibited, while transferrin entry was strongly affected. Treatment with the cationic amphiphilic drug chlorpromazine, which induces a redistribution of a clathrin-coated pit component, AP-2, to endosomes, reduced transferrin, but not IL2 internalization. Thus, unexpectedly, this cytokine and its receptors can still be rapidly endocytosed in the absence of functional clathrin-coated structures. We propose a model for receptor-mediated endocytosis that may account for these results and published data on other receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.