Abstract

The principles for the operation of redox-linked proton pumps are reviewed and applied to one specific pump, cytochrome oxidase. Systematic studies of internal electron transfer in the different redox states of this pump will be facilitated by the development of methods for rapid electron injection into the metal centers of the enzyme. Two methods that have been employed to generate electron donors are pulse radiolysis and laser flash photolysis. The rate of electron injection from photoexcited Ru-modified cytochrome c or triplet Zn-cytochrome c into the Cu A center is about 10 5 s −1, and the Cu A/cytochrome a electron equilibration rate is 2 × 10 4 s −1. Electron transfer from cytochrome a to the cytochrome a 3-Cu B site occurs at 2 × 10 5 s −1 in the half-reduced enzyme, whereas the rate is only 2 × 10 2 s −1 in the peroxide intermediate, despite a much higher driving force. It is likely that variations in distant electronic coupling attributable to a ligand shuttle, as well as changes in the reorganization energy of one or more of the redox centers, contribute to the control of internal electron flow in the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.