Abstract

High-valent Pd complexes are potent agents for the oxidative functionalization of inert C-H bonds, and it was previously shown that rapid electrocatalytic methane monofunctionalization could be achieved by electro-oxidation of PdII to a critical dinuclear PdIII intermediate in concentrated or fuming sulfuric acid. However, the structure of this highly reactive, unisolable intermediate, as well as the structural basis for its mechanism of electrochemical formation, remained elusive. Herein, we use X-ray absorption and Raman spectroscopies to assemble a structural model of the potent methane-activating intermediate as a PdIII dimer with a Pd-Pd bond and a 5-fold O atom coordination by HxSO4(x-2) ligands at each Pd center. We further use EPR spectroscopy to identify a mixed-valent M-M bonded Pd2II,III species as a key intermediate during the PdII-to-PdIII2 oxidation. Combining EPR and electrochemical data, we quantify the free energy of Pd dimerization as <-4.5 kcal/mol for Pd2II,III and <-9.1 kcal/mol for PdIII2. The structural and thermochemical data suggest that the aggregate effect of metal-metal and axial metal-ligand bond formation drives the critical Pd dimerization reaction in between electrochemical oxidation steps. This work establishes a structural basis for the facile electrochemical oxidation of PdII to a M-M bonded PdIII dimer and provides a foundation for understanding its rapid methane functionalization reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.