Abstract

An electrochemical assay for the detection of the enzymatic activity of the antigen 85 (Ag85) tuberculosis (TB) biomarker was developed and evaluated for the qualitative detection of Mycobacterium tuberculosis in decontaminated sputum. For this purpose, the electroactive properties of both synthetic p-aminophenyl-6-O-octanoyl-3-d-glucopyranoside (p-APOG) substrate and p-aminophenyl-6-3-d-glucopyranoside (p-APG) product released after the removal of the octanoyl fatty acid by the Ag85 were investigated with disposable carbon screen-printed electrodes by cyclic voltammetry. Since specific anodic responses were obtained for the p-APOG substrate and the p-APG product, the intensity of the oxidation peak of the p-APG (E = + 0.35 V vs. Ag/AgCl) was selected as the analytical response for the detection of the Ag85 acyltransferase activity. Once the proof of concept of the Ag85 electrochemical assay was validated with a commercially-available Ag85B protein, its specificity was further assessed by analyzing pure cultures of various bacteria including tuberculous and non-tuberculous mycobacteria as well as different species found in patients' sputum. Finally, with a specificity of 78% and a sensitivity of 89%, the method was successfully compared to microscopy and culture routine tests for TB testing in 36 frozen fluidized and decontaminated sputum. This suggests that owing to its convenience, rapidity, low-cost and portability, the reported Ag85 electrochemical assay is a promising tool to screen patients for TB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.