Abstract

In this study, MoS2/TiO2 nanohybrids, formed through hydrothermal synthesis technique, was considered as a superior heterojunction for the removal of tetracycline (TC) and Pb (II) reduction under visible light irradiation. The Z-scheme MoS2/TiO2 nanohybrids was easily synthesized with much narrower nanoparticles, ~10 times the outstanding charge separation, and greater specific surface area than bulk MoS2 or TiO2. The MoS2/TiO2 nanohybrids achieved a stronger photocatalytic activity, which could degrade 94% TC within 60 min. The optimized nanohybrids catalysts demonstrated outstanding efficiency with the apparent reaction rate constants of 0.05 min−1 for TC removal, about 3–4 times as bigger as the removal rate of bulk components. Superoxide radical (˙O2−) was presumed as the conduct active species in the potential improvement mechanism of organized MoS2/TiO2 nanohybrids for photocatalytic activities was introduced. These can admit to prefer photodegradation pathways and mechanism of tetracycline by nanohybrids with visible light activity. The novel nanohybrids photocatalysts have great structural stability, greater light absorption, and superior cycle performance, which could be utilized as an efficient process of antibiotics degradation and Pb (II) removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.