Abstract
A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation, AID2, systems work efficiently and rapidly in the human pathogenic yeasts, Candida albicans and Candida glabrata. We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid. Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens. IMPORTANCE Life-threatening fungal infections are an escalating human health problem, complicated by limited treatment options and the evolution of drug resistant pathogen strains. Identification of new targets for therapeutics to combat invasive fungal infections, including those caused by Candida species, is an urgent need. In this report, we establish and validate an inducible protein degradation methodology in Candida albicans and Candida glabrata that provides a new tool for protein functional characterization in these, and likely other, fungal pathogen species. We expect this tool will ultimately be useful for the identification and characterization of promising drug targets and factors involved in virulence and drug resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.