Abstract

BackgroundEcological shifts can promote rapid divergence and speciation. However, the role of ecological speciation in animals that reproduce predominantly asexually with periodic sex and strong dispersal, such as lacustrine cladocerans, is poorly understood. These life history traits may slow or prevent ecological lineage formation among populations. Proponents of the postglacial ecological isolation hypothesis for Daphnia suggest that some species have formed postglacially in adjacent, but ecologically different habitats. We tested this hypothesis with ecological, morphological, and multilocus coalescence analyses in the putative lacustrine sister species, Daphnia parvula and Daphnia retrocurva.ResultsDaphnia parvula and D. retrocurva showed strong habitat separation with rare co-occurrence. Lakes inhabited by D. parvula were smaller in size and contained lower densities of invertebrate predators compared to lakes containing D. retrocurva. In the laboratory, D. retrocurva was less vulnerable to invertebrate predation, whereas D. parvula was less vulnerable to vertebrate predation and was smaller and more transparent than D. retrocurva. The species are significantly differentiated at mitochondrial and nuclear loci and form an intermediate genetic divergence pattern between panmixia and reciprocal monophyly. Coalescence and population genetic modelling indicate a Late or Post Glacial time of divergence with a demographic expansion.ConclusionsDespite their young age and mixed breeding system, D. parvula and D. retrocurva exhibit significant ecological and genetic divergence that is coincident with the formation of deep temperate glacial lakes. We propose that predation may have facilitated the rapid divergence between D. parvula and D. retrocurva and that intermediate divergence of aquatic cyclic parthenogens is likely more common than previously thought.

Highlights

  • Ecological shifts can promote rapid divergence and speciation

  • Habitat differentiation Of the 64 lakes analyzed from the data collected from the Environmental Protection Agency (EPA) of lakes in the Northeastern United States, 47 contained D. parvula, 16 contained D. retrocurva, and one contained both species

  • The Discriminant Analysis (DA) indicated that abiotic variables significantly discriminated between lakes containing D. parvula and lakes containing D. retrocurva (Table 1), with lake area, lake depth, and lake volume contributing most to this group separation

Read more

Summary

Introduction

The role of ecological speciation in animals that reproduce predominantly asexually with periodic sex and strong dispersal, such as lacustrine cladocerans, is poorly understood. Cladocerans contain several candidate groups for detailed empirical study of ecological and genetic divergence in a system characterized by both sexual and asexual reproduction (cyclic parthenogenesis). These microcrustaceans often inhabit insular freshwater systems (i.e. lakes, ponds, reservoirs) with a mosaic of selective regimes through many environmental factors such as ephemerality, temperature, nutrient availability, competition, and predation [28,29,30]. There is little knowledge of ecological speciation among sister species of lacustrine cladocerans, where sexual reproduction is relatively infrequent

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.