Abstract

The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L−1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0–103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call