Abstract

Apatite fission-track analyses indicate that the Kazdag ˘ Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17-14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two- stage structural evolution of the massif. The first stage - encompassing much of the rapid thermal evolution of the massif- comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Kuckkuyu Fm.). The second stage (Plio-Quaternary) has been domi- nated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call