Abstract

Compared with anaerobic pressure sewers, gravity sewers have much more complex operational conditions, such as anaerobic/aerobic spatial variations along variable structures of the pipe network. This greatly complicates the prediction of sulfide generation from spatially heterogeneous sewer sediments. This study proposes a novel quantitative approach for rapidly estimating the sulfide generation flux by understanding the sulfidogenic conversion under complex sewer conditions. Significant anaerobic/aerobic spatial variations were the most critical factor affecting the sulfide production in residential gravity sewers. The dynamic aeration-related process stimulated the growth of sulfide-oxidizing bacteria (SOB) in the surface zone, while the sulfidogenic and methanogenic zone moved into deeper layers. A detailed mechanism model incorporating dynamic alternative anaerobic/aerobic transformation was developed to predict apparent sulfide production, as well as the microscale spatial profiles of chemicals and microbial communities in sediments. The model was evaluated to establish a rapid quantitative approach that only depended on a few key parameters (e.g., flow velocity, pipe diameter, slope, mean hydraulic depth and sulfate concentration), which can provide an important basis for estimating different sulfide generation fluxes under various sewer factors. The identification of sulfide generation hotspots will greatly help determine how to economically control sulfide generation by chemical dosing or pipe structural modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call