Abstract

AbstractBy perturbing co-evolved interactions, biological invasions provide an opportunity to study the evolution of interactions between hosts and their parasites on ecological timescales. We studied the interaction between the cane toad (Rhinella marina) and its direct-lifecycle lungworm (Rhabdias pseudosphaerocephala) that was brought from South America to Australia with the toads in 1935. Compared with infective parasite larvae from long-established (range-core) toad populations, parasite larvae from toads near the invasion front were larger, lived longer and were better able to resist exposure to toxin from the parotoid glands of toads. Experimentally, we infected the common-garden-reared progeny of toads from range-core and invasion-front populations within Australia with lungworms from both populations. Infective larvae from invasion-front (vs. range-core) populations of the parasite were more successful at entering toads (by skin penetration) and establishing infections in the lungs. Toads from invasion-front populations were less prone to infection by either type of larvae. Thus, within 84 years, parasites at an invasion front have increased infectivity, whereas hosts have increased resistance to parasite infection compared with range-core populations. Rapid evolution of traits might affect host–parasite interactions during biological invasions, generating unpredictable effects both on the invaders and on native ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.