Abstract
Disulfide bonds are a class of important post-translational modifications that play important roles in modulating the structures and functions of proteins. Therefore, the mapping of disulfide linkages in peptides and proteins is indispensable for complete structure characterization and functional studies. As disulfide bonds in protonated ions do not dissociate readily under low-energy collision-induced dissociation (CID), they are usually chemically cleaved or activated prior to mass spectrometry (MS) or tandem MS (MS/MS) analysis. In this study, we report a new method that allows the mapping of disulfide linkages in peptides and proteins through meta-chloroperoxybenzoic acid (mCPBA)-based disulfide oxidation and MS/MS. Upon oxidation, the disulfide bond is converted to a thiosulfinate group, i.e., S(═O)-S, in a rapid (>60% yield in 1 min) and highly specific approach in an aqueous phase. The thiosulfinate group is then preferentially cleaved by MS/MS. For interchain disulfide linkages, this leads to a facile peptide chain separation and the identification of disulfide-linked peptides. For intrachain disulfide linkages, collisional activation of the thiosulfinate leads to disulfide cleavage and fragmentation of the peptide backbone constrained by the disulfide loop, enabling a near-complete peptide sequencing. The mCPBA oxidation-based disulfide mapping strategy can be readily integrated with bottom-up or top-down protein analysis for comprehensive protein structure elucidation, e.g., digested lysozyme and intact human insulin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.