Abstract

Rapid and in situ profiling of volatile metabolites from body fluids represents a new trend in cancer diagnosis and classification in the early stages. We report herein an on-chip strategy that combines an array of conductive nanosensors with a chaotic gas micromixer for real-time monitoring of volatiles from urine and for accurate diagnosis and classification of urinary tract cancers. By integrating a class of LEGO-inspired microchambers immobilized with MXene-based sensing nanofilms and zigzag microfluidic gas channels, it enables the intensive intermingling of volatile organic chemicals with sensor elements that tremendously facilitate their ion-dipole interactions for molecular recognition. Aided with an all-in-one, point-of-care platform and an effective machine-learning algorithm, healthy or diseased samples from subpopulations (i.e., tumor subtypes, staging, lymph node metastasis, and distant metastasis) of urinary tract cancers can be reliably fingerprinted in a few minutes with high sensitivity and specificity. The developed detection platform has proven to be a noninvasive supplement to the liquid biopsies available for facile screening of urinary tract cancers, which holds great potential for large-scale personalized healthcare in low-resource areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.