Abstract
Experimental studies of human atherogenesis require an appropriate animal model that mimics human physiology and pathology. Because swine physiology is similar to human physiology, we developed a hyperlipidemia-induced atherosclerosis model using the recently developed world's smallest Microminipig(TM). These animals weigh only 5kg at 3months of age, much smaller than any other miniature pig. We found that the administration of a high-fat/high-cholesterol diet containing at least 0.2% cholesterol without cholic acid for as little as eight weeks induces hypercholesterolemia and subsequent atherosclerosis in these animals. The serum levels of low-density lipoprotein cholesterol(LDL-C) and the percent distribution of cholesterol in the LDL fractions were markedly increased. The hepatic expression of LDL receptor and hydroxymethylglutaryl-CoA reductase was coordinately decreased. The cholesteryl ester transfer protein activity, which plays a role in reverse cholesterol transport, was detected in the serum of the Microminipigs. Niemann-Pick C1-like 1 protein was expressed in both the liver and small intestine; however, hepatic apoB mRNA editing enzyme was not expressed. As in humans, and in contrast to that observed in mice, most of the hepatic lipase activity was localized in the liver. These results suggest that the hyperlipidemia-induced gene expression profile linked to cholesterol homeostasis and atherogenesis is similar in Microminipigs and humans. We conclude that the characteristics of the Microminipig, including its easy handling size, make it an appropriate model for studies of atherosclerosis and related conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.