Abstract

Over the last 30 years, there have been dramatic changes in phased array coil technology leading to increasing channel density and parallel imaging functionality. Current receiver array coils are rigid and often mismatched to patient’s size. Recently there has been a move towards flexible coil technology, which is more conformal to the human anatomy. Despite the advances of so-called flexible surface coil arrays, these coils are still relatively rigid and limited in terms of design conformability, compromising signal-to-noise ratio (SNR) for flexibility, and are not designed for optimum parallel imaging performance. The purpose of this study is to report on the development and characterization of a 15-channel flexible foot and ankle coil, rapidly designed and constructed using highly decoupled radio-frequency (RF) coil elements. Coil performance was evaluated by performing SNR and g-factor measurements. In vivo testing was performed in a healthy volunteer using both the 15-channel coil and a commercially available 8-channel foot coil. The highly decoupled elements used in this design allow for extremely rapid development and prototyping of application-specific coils for different patient sizes (adult vs child) with minimal additional design consideration in terms of coil overlap and geometry. Image quality was comparable to a commercially available RF coil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.