Abstract
The hepatotoxicity of Microcystin-LR (MC-LR) is mainly caused by its Adda moiety. In this study, we used TiO2-supported Pd catalysts to selectively hydrogenate the CC bonds in the Adda moiety, achieving rapid detoxification of MC-LR in water under ambient conditions. MC-LR was removed within 5 min by catalytic hydrogenation on Pd(1.0)/TiO2 with a catalyst dosage normalized rate constant of 1.3 × 10−2 L mgcat−1 min−1, significantly more efficient than other catalytic treatment methods. The reactions proceeded in a highly selective manner towards catalytic hydrogenation at the CC bond of the Mdha moiety and subsequently the conjugated double bond of the Adda moiety, yielding two intermediates and one final product. Upon catalytic hydrogenation for 30 min on Pd(0.07)/TiO2, the toxicity of MC-LR (assessed by protein phosphatase 2A activity assay) drastically decreased by 90.8%, demonstrating effective detoxification. The influence of catalyst support, Pd content, initial MC-LR concentration, reaction pH, and catalytic stability were examined. Surface adsorption and the cationic Pd played a crucial role in the reaction kinetics. Our results suggest that catalytic hydrogenation is a highly effective and safe strategy for detoxifying MC-LR by selective reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.