Abstract

Single-span oligomeric α-helical transmembrane proteins are common in virus ion channels, which are targets of antiviral drugs. Knowledge about the high-resolution structures of these oligomeric α-helical bundles is so far scarce. Structure determination of these membrane proteins by solid-state NMR traditionally requires resolving and assigning protein chemical shifts and measuring many interhelical distances, which are time-consuming. To accelerate experimental structure determination, here we introduce a simple solid-state NMR approach that uses magnetization transfer from water and lipid protons to the protein. By detecting the water- and lipid-transferred intensities of the high-sensitivity methyl 13C signals of Leu, Val, and Ile residues, which are highly enriched in these membrane proteins, we can derive models of the topology of these homo-oligomeric helical bundles. The topology is specified by the positions of amino acid residues in heptad repeats and the orientations of residues relative to the channel pore, lipids, and the helical interface. We demonstrate this water- and lipid-edited methyl NMR approach on the envelope (E) protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. We show that water-edited and lipid-edited 2D 13C-13C correlation spectra can be measured with sufficient sensitivity. Even without resolving multiple residues of the same type in the NMR spectra, we can obtain the helical bundle topology. We apply these experiments to the structurally unknown E proteins of the MERS coronavirus and the human coronavirus NL63. The resulting structural topologies show interesting differences in the positions of the aromatic residues in these three E proteins, suggesting that these viroporins may have different mechanisms of activation and ion conduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call