Abstract

A rapid and accurate determination of interfacial tensions (IFTs) in nanopores is scientifically and practically significant, while most existing experimental measurements are restricted to the micrometer scale and theoretical calculations are relatively limited. In this study, six series of the IFT measurement tests for the binary CO2-C10, C1-C10, and N2-C10 mixtures are conducted at temperatures ( T) of 25.0 and 53.0 °C in a self-manufactured nanofluidic system. Moreover, a nanoscale-extended equation-of-state model considering the effects of the confinement, intermolecular interactions, and disjoining pressure and a semianalytical correlation are proposed to calculate the IFTs of the three mixtures in bulk phase and nanopores. Third, a new Tolman length formulation is developed for the IFT corrections in nanopores. Overall, the calculated IFTs from the two theoretical methods agree well with the measured results for most cases in nanopores. On the other hand, effects of the pore scale, temperature, pressure, and fluid composition on the IFTs of the three mixtures are effectively validated and specifically investigated. One suggestion comes from this work that the two theoretical methods for calculating the IFTs are better to be applied concurrently to minimize errors. Another important future work is to include more pore surface parameter (e.g., wettability) into the theoretical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.