Abstract

This study developed a rapid and efficient graphite furnace digestion combined with inductively coupled plasma emission spectrometry (ICP-OES) method, enabling precise quantification of germanium (Ge) in coal and various coal-derived metallurgical byproducts across a broad concentration level (∼ppm-n%). The graphite furnace digestion conditions were examined intensively as a function of the acid amounts of HNO3 and HF (5–10 mL), temperature (80–180 °C), time (1–5 h), and acid drive methods (H3BO3 neutralization versus heating). Coal references including SARM 19, SARM 20, NIST SRM 1632e, and fly ash standard NIST SRM 2689 were tested. The optimum recovery of germanium was obtained when the HNO3 dosage, HF dosage, solid sample mass, temperature, and duration time were 10 mL, 5 mL, 0.1 g, 80 °C and 1 h. Agreement of 95.15–96.54 % between the measured and certified value was obtained under the optimum conditions. The spiked recovery was 103.23–103.54 %, indicating the matrix-analytes interactions were negligible. Boric acid neutralization reduced the recovery rates to 47.2–49.3 % and was not be appropriate for driving HF. The optimal spectral line for determining Ge is at a wavelength of 265.117 nm, at which the limit of detect and the limit of quantification were 0.46 μg L−1 and 1.53 μg L−1, respectively. The applicability of the method was validated by quantifying Ge in Ge-rich lignite, fly ashes (FA), and chlorinated distillation residue (CR) samples. The concentration of Ge in coals was 44.75–225.41 μg g−1, the content in FA was 0.68%–2.3 %, and the content in CR was 0.18 %, with the uncertainty of the method obtained being less than 0.5 %. X-ray fluorescence spectrometer (XRF) was used to verify the results. The difference between XRF data and ICP-OES data was less than 5 %, confirming the accuracy and reproductivity of the analytical method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.