Abstract

ABSTRACTTextile products must be marked by fabric type and composition on the label and cotton is by far the most important fiber in the industry and often needs fast quantitative analysis. The corresponding standard methods are very time-consuming and labor-intensive. The work focuses on exploring the feasibility of combining near-infrared (NIR) spectroscopy and interval-based partial least squares (iPLS) for determining cotton content in textiles. Three types of partial least square (PLS)-based algorithms were used for experimental measurements. A total of 91 cloth samples with cotton content ranging from 0 to 100% (w/w) were collected and all compositions are commercially available on the market in China. In all cases, the original spectrum axis was split into 20 subintervals. As a result, three final models, i.e., the iPLS model on a single subinterval, the backward interval partial least squares (biPLS) model on the region remaining six subintervals, and the moving window partial least squares (mwPLS) model with a window of 75 variables, achieved better results than the full-spectrum PLS model. Also, no obvious differences in performance were observed for the three models. Thus, either iPLS or mwPLS was preferred considering their simplicity, which suggested that iPLS and mwPLS combined with NIR technique may have potential for the rapid determination of the cotton content of textile products with comparable accuracy to standard procedures. In addition, this approach may have commercial and regulatory advantages that avoid labor-intensive and time-consuming chemical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call