Abstract

Yellow catfish (Pelteobagrus fulvidraco) is commonly contaminated by protease inhibitors because of the illegal use of antiviral drugs in aquaculture, so the determination of antiviral drugs is essential in food safety supervision. In this study, a novel sorbent, graphene and silica nanospheres composite (G/KCC-1), was synthesized for pipette-tip-based solid-phase extraction (PT-SPE) and purification of ritonavir, saquinavir, and indinavir in yellow catfish, followed by ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) analysis. The wrinkly structure of G/KCC-1 with center-radial nanowrinkles enlarged the surface area and increased the capacity of absorbing the target analyte. With the proposed G/KCC-1 based PT-SPE UPLC-MS/MS method, the pH of sample solution, aspirating/dispensing cycles for extraction and elution were optimized to be 4.0, 25, and 10 respectively, and the eluting solvent was methanol/ammonia (95:5, v/v) with 0.02 M sodium chloride. This new method was further validated to be linear (correlation coefficient R2, 0.9993–0.9996), sensitive (limit of detection, LOD ≤ 0.8 ng mL−1), accurate (89.3–114.2%), and precise (relative standard deviation, RSD ≤ 6.23%). These results indicated that the proposed method is qualified in bioanalytical method validation and meets the requirements for detecting illegally used antiviral drugs in yellow catfish. The demonstrated G/KCC-1 based PT-SPE UPLC-MS/MS method is a potential analytical method in food and drug administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call