Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs) with different physico-chemical properties poses a great threat to the environment and human health. Simultaneous detection of different classes of PFASs is a difficult task, especially for rapid analysis of polluted water samples in environmental forensic cases. In this study, a simple sample preparation ultrahigh-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry was established for the detection of PFASs in a wide range of water matrices. By optimizing the conditions of pretreatment and the parameters of the instrument, the developed method provided good linearity of calibration standards (R2 > 0.99), and demonstrated excellent MLOQ (0.008-1.2 µg/L), with spiked recoveries ranging from 57.7% to 151% for 47 targets in surface water samples, and from 45.7 to 165% for 46 targets in ground and waste water samples, respectively. This method required an injection volume of 3 µL and an analysis time of only 18 min per sample. The validation method was successfully applied to the analysis of 20 environmental water samples, in which 15 target substances with different concentrations were detected, with total concentrations of 0.082 to 262.455 μg/L. The method is simple and exclusive, and can rapidly confirm the occurrence of PFASs in different water samples, providing a convenient and fast high-throughput analysis, which is especially suitable for the application in the environmental forensic investigation of PFASs pollution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.