Abstract

Porcine Sapelovirus (PSV) infection has been confirmed in pigs worldwide, mostly asymptomatic, but in some cases, it can lead to significant issues in the gastrointestinal, respiratory, neurological, or reproductive systems. PSV is considered an emerging pathogen of porcine species. Recombinase polymerase amplification (RPA) is a simple and fast isothermal technique that uses three enzymes for amplification without the use of any sophisticated equipment. The reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed and optimized for field based detection of PSV. The assay was developed by targeting 5´UTR region of PSV genome and optimized for reaction time, temperature, primer and MgOAc concentration. The analytical sensitivity and specificity of assay was determined. The assay was evaluated on 85 porcine faecal samples collected from field. In addition to conventional format, this assay was also optimized for visual dye-based detection format and lateral flow strips based detection (in combination with probe). The developed assay works at constant temperature of 35°C for 20min with forward primer concentration 20pm, reverse primer concentration 10pm and MgOAc concentration of 14mM. This assay is highly sensitive and detects up to 28 copies of viral nucleic acid both in the conventional as well as in fluorescent dye based detection format. Using the newly developed assay 21 samples out of 85 samples were found positive, showing positivity rate of 24.7%. The positivity rate of RT-RPA assay corroborated with the gold standard RT-PCR test. This study presented the development of an RT-RPA isothermal assay for rapid and accurate detection of PSV. The assay is highly sensitive, specific, works at a low and constant temperature, does not require any high-end instrument and can be a potential diagnostics tool for pen-side testing of PSV in the field conditions. The newly developed RT-RPA assay could successfully detect PSV circulating in swine population of Haryana, India. This is a first report of this kind from the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.