Abstract

Peach shoot blight (PSB), caused by Phomopsis amygdali, is a serious threat to the healthy development of the peach industry and leads to 30 to 50% damage to peach production in southern China. In this study, loop-mediated isothermal amplification (LAMP) technology was used to detect the P. amygdali target of a gene of GME6801 that was unique in the whole genome of the pathogen compared with that of Diaporthe (Phomopsis) longicolla TWH P74, Fusarium graminearum PH-1, Colletotrichum gloeosporioides SMCG1 and Magnaporthe oryzae 70-15. Blast comparison of this gene sequence in NCBI database showed that no homologous sequences were found. Therefore, the gene sequence of GME6801 was used to design two pairs of LAMP primers and one pair of PCR primers. The results showed that both primer sets were specific to the 15 strains of P. amygdali, and the other 15 fungal strains presented negative reactions, similar to the control. In addition, 50 pg of genomic DNA of P. amygdali in a 25-μl reaction system could be detected by LAMP assay, which was 100 times more sensitive than PCR. Furthermore, the GME6801 LAMP assay was used to detect artificially inoculated twigs of the pathogen, disease twigs within significantly symptomatic PSB in the fields, and healthy twigs in the same orchard, with detection rates of 100, 75, and 20.8%, respectively. However, detection rates of conventional PCR were separately 100, 62.5, and 16.7%. The results indicated that GME6801-based LAMP could be used for P. amygdali detection as its specificity, sensitivity, and simplicity. This study provides a rapid experimental basis for the identification and prediction of P. amygdali that causes PSB and is beneficial for precise prevention and control of the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call