Abstract

Detection of pathogens was demonstrated in a polydimethylsiloxane (PDMS)/glass microfluidic chip with which microbead-based immunoseparation platform and the bioluminescence technology were integrated. Escherichia coli (E. coli) O157:H7 was used as the model bacteria. The microchamber in microfluidic chip was filled with glass beads coated with antibodies which could capture specific organism, and the capture efficiency of the chip for the bacteria was about 91.75% approximately 95.62%. Then the concentration of bacteria was determined by detecting adenosine triphosphate (ATP) employing bioluminescence reaction of firefly luciferin-lucifera-ATP on chip. The method allowed reliable detection of E. coli O157:H7 concentrations from 3.2 x 10(1) cfu/microL to 3.2 x 10(5) cfu/microL within 20 min. This research demonstrated excellent reproducibility, stability, and specificity, and could accurately detect the pathogenic bacteria in food samples. The microfluidic chip and the equipments used in this method are easy to miniaturize, thus the method has great potential to be developed to a portable device for rapid detection of pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.