Abstract

The threat to public health from bacterial infections has led to an urgent need to develop simpler, faster and more reliable bacterial detection methods. In this work, we developed a universal dual-recognition based sandwich fluorescence resonance energy transfer (FRET) sensor by using specific aptamer-modified quantum dots (Aptamer-QDs) as energy donor and lectin concanavalin A (Con A) modified gold nanoparticles (Con A-AuNPs) as energy acceptor to achieve rapid and sensitive detection of Escherichia coli (E. coli) within 0.5 h. In the presence of the target E. coli, the energy donor of Aptamer-QDs and acceptor of Con A-AuNPs were close to each other, causing changes of FRET signals. Based on the constructed FRET sensor, a linear detection range of from 102 cfu/mL to 2 × 108 cfu/mL with the detection limit of 45 cfu/mL for E. coli was achieved. Furthermore, the FRET sensor was applied to detect E. coli in the milk and orange juice with the detection limit of 300 cfu/mL and 200 cfu/mL, respectively and recovery rate from 83.1% to 112.5%. The strategy holds great promise in pathogenic bacteria detection due to its rapid and sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call