Abstract
We report the use of an array of microcantilevers to measure the specific binding of Salmonella to peptides derived from phage display libraries. Selectivity of these phage-derived peptides for Salmonella spp. and other pathogens ( Listeria monocytogenes and Escherichia coli ) are compared with a commercially available anti- Salmonella antibody and the antimicrobial peptide alamethicin. A Langmuir isotherm model was applied to determine the binding affinity constants of the peptides to the pathogens. One particular peptide, MSal 020417, demonstrated a higher binding affinity to Salmonella spp. than the commercially available antibody and is able to distinguish among eight Salmonella serovars on a microcantilever. A multiplexed screening system to quickly determine the binding affinities of various peptides to a particular pathogen highly improves the efficiency of the peptide screening process. Combined with phage-derived peptides, this microcantilever-based technique provides a novel biosensor to rapidly and accurately detect pathogens and holds potential to be further developed as a screening method to identify pathogen-specific recognition elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.