Abstract

A novel electrochemical method for the rapid detection of organophosphorus pesticide residues was realized on a dual-channel screen-printed electrode (DSPE) that was integrated with a portable smartphone-controlled potentiostat. The two carbon working channels of DSPE were first modified by electrodepositing of Prussian blue. The channels were then modified with acetylcholinesterase (AChE) via Nafion. The inhibition ratio of AChE was detected by comparing the electrical current of acetylthiocholine (ATCh) that was catalyzed by the enzyme electrodes with (channel 1) and without (channel 2) organophosphorus pesticide. Inhibition ratios were related with the negative logarithm of the organophosphorus pesticide (trichlorfon, oxamyl, and isocarbophos) concentrations at optimum experimental conditions (pH 6.9 of electrolyte, 0.2V working potential, 2.5μL AChE modification amount, and 15min inhibition time). The linear equations were I%=32.30lgC+253.3 (R=0.9750) for isocarbophos, I%=35.99lgC+270.1 (R=0.9668) for chlorpyrifos, and I%=33.70lgC+250.5 (R=0.9606) for trichlorfon. The detection limits were calculated as 10−7g/mL. Given that the inhibition ratios were only related with pesticide concentration and not with pesticide species, the proposed electrodes and electrometer can rapidly detect universal organophosphorus pesticides and assess pesticide pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.