Abstract

Food safety has emerged as a paramount concern in global health, prompting innovative approaches to ensure the safety of people's sustenance. In this study, a novel strategy was devised to fabricate Fe3O4-ZnO-MnO2 hybrid nanobiocatalysts, which exhibited remarkable enzymatic activity surpassing that of Horseradish peroxidase (HRP) catalysis. It demonstrated exceptional proficiency in decomposing 3,3′,5,5′-tetramethylbenzidine (TMB) without the need for harsh reaction conditions or the aid of H2O2. We established colorimetric detection systems based on Fe3O4-ZnO-MnO2-TMB both for nitrite (NO2−) and Listeria monocytogenes (LM) in food. Impressively, the detection limit of nitrite reached an astonishingly low level of 0.022 mg L−1, and the detection limit for LM was determined to be 3.5 cfu mL−1. These compelling results unequivocally validate the potential of these hybrid nanobiocatalysts to fortify food safety measures. Moreover, they serve as a valuable reference for the colorimetric detection of diverse analytes and the simultaneous detection of multiple targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.