Abstract

Beckwith Wiedemann syndrome (BWS) and Russell Silver syndrome (RS) are growth disorders with opposing epimutations affecting the H19/IGF2 imprinting center at 11p15.5. Overgrowth and tumor risk in BWS is caused by aberrant expression of the paternally expressed, imprinted IGF2 gene, occurring as a consequence of mosaic hypermethylation within the imprinting center, or to mosaic paternal uniparental disomy (UPD). RS is characterized by severe intrauterine growth retardation (IUGR). A subset of RS cases were recently shown to have mosaic hypomethylation within the H19/IGF2 imprinting center, predicted to silence paternally expressed IGF2 in early development. Molecular diagnosis for BWS and RS involves methylation analysis of the H19 locus, enabling discrimination of allelic methylation patterns. In this study, methylation-sensitive high-resolution melting analysis (MS-HRM) was used to analyze methylation within the intergenic region of the H19 locus. A total of 36 samples comprising normal control (11), BWS (19), and RS (six) DNA were analyzed in a blinded study and scored as hypermethylated, normal, or hypomethylated. Results were compared with those derived by methylation-sensitive Southern blotting using the restriction enzymes Rsa I and Hpa II. A total of 100% concordance was obtained for the Southern blotting and MS-HRM scores. A total of three samples with paternal duplication affecting the H19/IGF2 region were scored as equivocal by both methods; however, 33 out of 36 (92%) the samples were unambiguously scored as being hypermethylated, hypomethylated, or normally methylated using MS-HRM. We conclude that MS-HRM is a rapid, cost-effective, and sensitive method for screening mosaic methylation changes at the H19 locus in BWS and RS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.