Abstract

Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) represent a serious threat to public health and their timely detection is essential for patient management and the prevention of nosocomial infections. Here, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to rapidly identify dominant KPC-Kp in China, by using an automated detection of a KPC-specific peak (at 4521 m/z) by a genetic algorithm using ClinProTools software. Whole-genome sequencing (WGS) was used to understand the genetic environment of the blaKPC-2 gene. In this study, we analyzed 235 K. pneumoniae Chinese clinical isolates, of which 175 (93 KPC-positive isolates and 82 KPC-negative isolates) isolates were used to build a model to select a KPC-specific peak, and another 60 isolates for external validation. In addition, all the spectra were visually inspected by the FlexAnalysis software to evaluate the accuracy of the automated detection. The results showed a 4521 m/z peak found in all blaKPC-2-positive isolates but absent in blaKPC-2-negative isolates. Interestingly, all KPC-Kp belonged to ST11, the dominant clone in China. WGS analysis of a representative isolate showed that the genetic environment of KPC-2 was IS26-ISKpn27-blaKPC-2-ΔISKpn6-Tn1721, similar to the KPC-2 genetic environment of ST11 KPC-Kp previously reported in China. Therefore, the 4521 m/z peak is closely related to ST11 KPC-Kp. In summary, we used MALDI-TOF MS to quickly detect KPC-Kp in the process of routine bacterial identification without increasing costs or requiring further knowledge, which has broad application prospects in drug resistance analysis and infection control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call