Abstract

Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) is an emerging superbug with implicit drug resistance to vancomycin. Detecting hVISA can guide the correct administration of antibiotics. However, hVISA cannot be detected in most clinical microbiology laboratories because the required diagnostic tools are either expensive, time consuming, or labor intensive. By contrast, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) is a cost-effective and rapid tool that has potential for providing antibiotics resistance information. To analyze complex MALDI-TOF mass spectra, machine learning (ML) algorithms can be used to generate robust hVISA detection models. In this study, MALDI-TOF mass spectra were obtained from 35 hVISA/vancomycin-intermediate S. aureus (VISA) and 90 vancomycin-susceptible S. aureus isolates. The vancomycin susceptibility of the isolates was determined using an Etest and modified population analysis profile–area under the curve. ML algorithms, namely a decision tree, k-nearest neighbors, random forest, and a support vector machine (SVM), were trained and validated using nested cross-validation to provide unbiased validation results. The area under the curve of the models ranged from 0.67 to 0.79, and the SVM-derived model outperformed those of the other algorithms. The peaks at m/z 1132, 2895, 3176, and 6591 were noted as informative peaks for detecting hVISA/VISA. We demonstrated that hVISA/VISA could be detected by analyzing MALDI-TOF mass spectra using ML. Moreover, the results are particularly robust due to a strict validation method. The ML models in this study can provide rapid and accurate reports regarding hVISA/VISA and thus guide the correct administration of antibiotics in treatment of S. aureus infection.

Highlights

  • Methicillin-resistant Staphylococcus aureus (MRSA) infection remains an intractable clinical problem (Liu et al, 2011)

  • The peak at m/z 6591 was selected as a relevant feature in all the training tasks (n = 30) and identified as the most crucial feature for distinguishing vancomycin-susceptible S. aureus (VSSA) from heterogeneous VISA (hVISA)/vancomycin-intermediate S. aureus (VISA)

  • We demonstrated that the Machine learning (ML)-based approach can successfully distinguish VSSA from hVISA/VISA on the basis of MALDI-TOF mass spectrometry (MS) data

Read more

Summary

Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) infection remains an intractable clinical problem (Liu et al, 2011). Vancomycin was formerly the drug of choice against MRSA, the unprecedented increase in the number and spread of organisms with reduced susceptibility to this drug, including two major phenotypes—vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA)—has brought this conventional treatment into question (Zhang et al, 2015). The prevalence of hVISA and VISA was reported in a systematic review to have increased worldwide from 4.68 and 2.05% (2006) to 7.01 and 7.93% (2014), respectively (Zhang et al, 2015). In Taiwan, the prevalence of hVISA increased from 0.7% (2003) to 10.0% (2013) and that of VISA from 0.2% (2003) to 2.7% (2013) (Huang et al, 2016). Despite adequate doses of vancomycin, patients with severe hVISA or VISA infection persistently suffer from bacteremia (Howden et al, 2010). Early and accurate detection of potentially non-susceptible staphylococcal strains is essential for hampering misuse of vancomycin and directing appropriate antibiotic therapy

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.