Abstract

Extended-spectrum beta-lactamases (ESBL), produced by Enterobacteriaceae members are enzymes that especially cause a resistance to cephalosporin group antibiotics commonly used in clinics. Early and rapid detection of ESBL production is crucial for antimicrobial treatment and infection control; however the methods used for this purpose are time consuming (24 to 48 hours). The aim of this study was to determine a flow cytometry based-test which provides to detect ESBL producing bacteria in a short time. A total of 38 ESBL-producing (29 Escherichia coli, 9 Klebsiella pneumoniae) and 10 non-producing (5 E.coli, 5 K.pneumoniae) Enterobacteriaceae strains isolated between 2012 and 2013 were included in this study. The identification and antibiotic susceptibility tests of the isolates were performed by using Phoenix(TM) 100 automated system (Becton Dickinson, USA). The presence of bla(TEM), bla(SHV), bla(CTX-M1), bla(CTX-M2) and bla(CTX-M9) genes were investigated in ESBL positive isolates via polymerase chain reaction method. At least one of the ESBL genes were detected in 36 out of 38 isolates and no genes were detected in two E.coli isolates. In flow cytometric method, the percentages of death cells exposed to cephalosporin [(ceftazidime (CAZ) or cefotaxime (CTX)] and clavulanic acid (CLA) combination, were compared with death cells exposed only to cephalosporin (CAZ or CTX). CLA index values (CAZ-CLA and CTX-CLA indices) were obtained for CTX and CAZ. Index values which was higher than 1.5 just for one cephalosporin were accepted as GSBL positive. The mean index values for CTX-CLA in ESBL positive strains according to their genotypic characteristics were between 1.14 and 7.22, while those values for CAZ-CLA were between 0.85 and 5.6. When the two groups of 38 ESBL positive and 10 ESBL negative strains were evaluated, statistically significant difference was detected for both CAZ-CLA and CTX-CLA indices (p< 0.005). CTX-CLA indices (p= 0.001) shown a better determination of ESBL when CAZ-CLA and CTX-CLA indices were compared statistically. In conclusion, flow cytometry is a rapid and reliable method for the detection of ESBL in clinical microbiology laboratories when compared with the other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.