Abstract
A biosensor was evaluated with regard to its usefulness in the rapid detection of Escherichia coli O157:H7 inoculated in ground beef, chicken carcass, and romaine lettuce samples. The biosensor consisted of a chemiluminescence reaction cell, a fiber-optic light guide, and a luminometer linked to a personal computer in conjunction with immunomagnetic separation. The samples inoculated with E. coli O157:H7 were first centrifuged and suspended in buffered peptone water and then incubated with anti–E. coli O157 antibody–coated magnetic beads and horseradish peroxidase(HRP)–labeled anti–E. coli O157 antibodies to form antibody-coated bead–bacterium–HRP-labeled antibody sandwich complexes. Finally, the sandwich complexes were separated from the samples in a magnetic field and reacted with luminol in the reaction cell. The number of E. coli O157:H7 cells was determined by collecting the HRP-catalyzed chemiluminescence signal from the bead surface through a fiber-optic light guide and measuring the signal with a luminometer. The chemiluminescence biosensor was specific for E. coli O157:H7 in samples containing other bacteria, including Salmonella Typhimurium, Campylobacter jejuni, and Listeria monocytogenes. The chemiluminescence signal was linear on a log scale from 102 to 105 CFU of E. coli O157:H7 per ml in samples. Detection could be completed within 1.5 h without any enrichment. The detection limits for ground beef, chicken carcass, and lettuce samples were 3.2 × 102, 4.4 × 102, and 5.5 × 102 CFU of E. coli O157:H7 per ml, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.