Abstract

Bovine respiratory disease (BRD) is a multifaceted condition that poses a primary challenge in calf rearing. Viruses and bacteria are etiological agents of BRD. Viral BRD is typically managed symptomatically, whereas bacterial BRD is predominantly managed through the empirical administration of antimicrobials. However, this empirical administration has raised concerns regarding the emergence of antimicrobial-resistant bacteria. Thus, rapid identification of pathogenic bacteria and judicious selection of antimicrobials are required. This study evaluated the usefulness of 16S rRNA analysis through nanopore sequencing for the rapid identification of BRD-causing bacteria. A comparative evaluation of nanopore sequencing and traditional culture method was performed on 100 calf samples detected with BRD. Nanopore sequencing facilitated the identification of bacteria at the species level in bovine nasal swabs, ear swabs, and lung tissue samples within approximately 6h. Of the 92 samples in which BRD-causing bacteria were identified via nanopore sequencing, 82 (89%) were concordant with the results of culture isolation. In addition, the occurrence of multiple infections exceeded that of singular infections. These results suggest that 16S rRNA sequencing via nanopore technology is effective in reducing analysis time and accurately identifying BRD-causing bacteria. This method is particularly advantageous for the initial detectable screening of BRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.