Abstract

Beer spoilage bacteria have been a headache for major breweries. In order to rapidly identify spoilage bacteria and improve the sensitivity and signal-to-noise ratio of bacterial SERS detection, the label-free SERS technique was used as a starting point, and we found eight bacteria species that led to beer spoilage. The impact of AgNP concentration and AgNP and bacterial binding time on the final results were thoroughly investigated. To maximize the increase in the SERS signal, an aluminized chip was created. We merged the t-SNE reduced dimensional analysis algorithm, and SVM, KNN, and LDA machine learning algorithms to further investigate the effect of the approach on the final identification rate. The results demonstrate that SERS spectra had an increased intensity and signal-to-noise ratio. The machine learning classification accuracy rates were all above 90%, indicating that the bacteria were correctly classified and identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.