Abstract

Rapid detection of analytes with improved selectivity is achieved though the use of estimation theory to analyze the response of polymer-coated microcantilever chemical sensors. In general, chemical sensors exhibit partial selectivity and can have relatively long response times. Using estimation theory, it is possible to make short-term response predictions from past data. This makes it possible to use the transient information (response time), often unique to an analyte/coating pair, to achieve an improvement in analyte species recognition while simultaneously allowing for a reduction in the time required for identification and quantification. An extended Kalman filter is used as a recursive online approach to refine the estimate of the sensor's future response. Both identification and quantification are thus possible as soon as the filter estimate achieves a high confidence level. Also, with improved selectivity, identification is possible using fewer sensors in an array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call