Abstract

Methysticin is a naturally occurring ingredient isolated from Piper methysticum Forst. The metabolic profile of methysticin is unknown. The goal of this study was to elucidate the metabolism of methysticin using rat and human liver microsomes and hepatocytes. The incubation samples were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-HRMS). The structures of the metabolites were characterized based on the elemental composition, exact mass, and product ions. A total of 10 metabolites were detected and identified. Among these metabolites, M4 (ring opening of 1,3-benzodioxole) was the predominant metabolite in rat and human liver microsomes. M4 and its glucuronide conjugate (M2) were the major metabolites in rat and human hepatocytes. The metabolic pathways of methysticin are summarized as follows: (a) oxidative ring opening of 1,3-benzodioxole forms the catechol derivative (M4), which subsequently undergoes glucuronidation (M1 and M2), methylation (M8), and sulfation (M7). (b) Demethylation to yield desmethyl methysticin (M6), followed by glucuronidation (M3 and M5). (c) Hydroxylation (M9 and M10). For the first time, this study provides new information on the in vitro metabolic profiles of methysticin, which facilitates an understanding of the disposition of this bioactive ingredient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.