Abstract

The aim of this study is to explore the feasibility of detection and quantification of two cheap adulterants (maltodextrin and starch) in Chinese functional food, hawthorn fruits powder (HFP), by using near infrared (NIR) spectroscopy coupled with chemometrics methods. The partial least squares discriminant analysis (PLS-DA) models were developed to discriminate the adulterated HFP from the authentic HFP, while the partial least squares regression (PLSR) models were employed to determine the contents of adulterants. In order to yield the best results, various spectra pretreatment methods and wavelength selection methods were carefully investigated. The models’ qualities were assessed by the self-consistency test, the independent test and the rigorous leave-one-out cross-validation test. The metrics for the PLS-DA discriminative model included error rate, true positive rate, true negative rate and F1 score, while the metrics for the PLSR quantitative model were determination coefficient, root mean square error and residual prediction deviation. Finally, very satisfying results were obtained, which indicate that our method is quite robust and applicable, and thus has great potential for rapid detection of adulteration in powder of many other herbal plants or functional foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.