Abstract

Hydraulic fracturing of the Marcellus Shale produces wastewaters that are hypersaline and highly enriched in isotopes of radium. Radium is understood to derive from the Marcellus Shale itself, but its source phases and their contributions to wastewater production have not been described. Using sequential extractions and experimental leachates, we characterize two distinct end-members that could contribute Ra to wastewaters, (1) a mineral phase, which hosts labile228Ra and has 226Ra/228Ra atom ratios ~250, and (2) an organic phase, which hosts exchangeable226Ra and has 226Ra/228Ra ~10,000. In leaching experiments we observed rapid extraction of Ra from these phases, with high ionic strength solutions leaching up to 14% of Ra from the shale in just hours. Radium concentrations and 226Ra/228Ra ratios increase with [Ca2+] of the leaching solution, and solutions approaching 1 M Ca2+ produce 226Ra/228Ra ratios compatible with Marcellus wastewaters. In contrast, pure water removes <0.5% of Ra from the shale with low 226Ra/228Ra ratios incompatible with wastewaters. Experimental results and wastewater data together provide a coherent picture, that the distinctive Ra isotopic signature of Marcellus wastewaters results from contemporaneous water-rock interactions that promote desorption of 226Ra from organics during hydraulic fracturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.