Abstract

We propose a novel numerical approach for the optimal design of wide-area heterogeneous electromagnetic metasurfaces beyond the conventionally used unit-cell approximation. The proposed method exploits the combination of Rigorous Coupled Wave Analysis (RCWA) and global optimization techniques (two evolutionary algorithms namely the Genetic Algorithm (GA) and a modified form of the Artificial Bee Colony (ABC with memetic search phase method) are considered). As a specific example, we consider the design of beam deflectors using all-dielectric nanoantennae for operation in the visible wavelength region; beam deflectors can serve as building blocks for other more complicated devices like metalenses. Compared to previous reports using local optimization approaches our approach improves device efficiency; transmission efficiency is especially improved for wide deflection angle beam deflectors. The ABC method with memetic search phase is also an improvement over the more commonly used GA as it reaches similar efficiency levels with upto 35% reduction in computation time. The method described here is of interest for the rapid design of a wide variety of electromagnetic metasurfaces irrespective of their operational wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call