Abstract
In this paper, a hybrid mechanism metasurface (HMM) employing 1-bit random coding is proposed to achieve polarization-insensitive and dual-wideband monostatic/bistatic radar cross section (RCS) reduction under a wide range of incident angles. The anisotropic unit cell is designed by the combination of the multi-objective particle swarm optimization (MOPSO) algorithm and Python-CST joint simulation, which facilitates the rapid acquisition of the desired unit cell with excellent dual-band absorption conversion capability. The unit cell and its mirrored version are used to represent the units "0" and "1", respectively. In addition, the array distribution with random coding of the units "0" and "1" is optimized under different incident angles, polarizations and frequencies, which enables better diffusion-like scattering. Simulation results demonstrate that the proposed coding HMM can effectively reduce the monostatic/bistatic RCS by over 10 dB within the dual-band frequency ranges of 2.07-3.02 THz and 3.78-4.71 THz. Furthermore, the specular and bistatic RCS reduction performances remain stable at oblique incident angles up to 45° for both TE and TM polarizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.