Abstract

In this study, we establish a mathematical rule for accelerating the prediction of low-cost Co-free AlCraFebNic FCC/B2-structured eutectic medium entropy alloys (EMEAs). The mathematical formulas are c ≥ 1.0, 4.38a + 4.28b + 3.97c ≈ 20.55, and c − a ˃ 1.0. With this rule, we successfully predict the AlCr1.18FeNi2.8 and AlCrFe1.46Ni2.5 eutectic alloys and verify their eutectic morphology by experiments. Both the AlCr1.18FeNi2.8 and AlCrFe1.46Ni2.5 EHEAs exhibit excellent compressive mechanical properties, with yield stress higher than 500 MPa, compressive fracture strength higher than 2450 MPa, and fracture strain > 40%, which can be attributed to their unique lamellar microstructure. Moreover, both alloys exhibit good corrosion resistance in 3.5 wt.% NaCl solution. Among them, the AlCr1.18FeNi2.8 EHEA exhibits better corrosion resistance due to the higher content of the FCC phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.