Abstract

Activation of G protein-gated inwardly rectifying K(+) (GIRK) channels, found in the brain, heart, and endocrine tissue, leads to membrane hyperpolarization that generates neuronal inhibitory postsynaptic potentials, slows the heart rate, and inhibits hormone release. During stimulation of G(i/o)-coupled receptors and subsequent channel activation, it has been observed that the current desensitizes. In this study we examined mechanisms underlying fast desensitization of cloned heteromeric neuronal Kir3.1+3.2A and atrial Kir3.1+3.4 channels and also homomeric Kir3.0 currents in response to stimulation of several G(i/o) G protein-coupled receptors (GPCRs) expressed in HEK-293 cells (adenosine A(1), adrenergic alpha(2A), dopamine D(2S), M(4) muscarinic, and GABA(B1b/2) receptors). We found that all agonist-induced currents displayed a similar degree of desensitization except the adenosine A(1) receptor, which exhibits an additional desensitizing component. Using the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), we found that this is due to a receptor-dependent, G protein-independent process. Using Ca(2+) imaging we showed that desensitization is unlikely to be accounted for solely by phospholipase C activation and phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis. We examined the contribution of the G protein cycle and found the following. First, agonist concentration is strongly correlated with degree of desensitization. Second, competitive inhibition of GDP/GTP exchange by using nonhydrolyzable guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) has two effects, a slowing of channel activation and an attenuation of the fast desensitization phenomenon. Finally, using specific Galpha subunits we showed that ternary complexes with fast activation rates display more prominent desensitization than those with slower activation kinetics. Together our data suggest that fast desensitization of GIRK currents is accounted for by the fundamental properties of the G protein cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.