Abstract

The Al2W3O12 ceramic with near-zero thermal expansion is a promising candidate for thermal shock resistance applications. However, the often-reported microcracks in the microstructure hinder the practical use of Al2W3O12. This work focuses on optimising the material processing—powder synthesis, calcination, milling, and sintering—to prepare dense polycrystalline Al2W3O12 with fine microcrack-free microstructure. The amorphous powder produced by the co-precipitation method had the highest specific surface area reported for this material, resulting in improved sinterability. Two rapid sintering methods were employed—Rapid Pressure-less Sintering and Spark Plasma Sintering. Both methods led to shorter processing times and lower sintering temperatures. However, Al2W3O12 samples produced by Spark Plasma Sintering were nearly fully dense with a density of ∼98% of theoretical density, the best value reported to date for this phase. The obtained fine crack-free microstructure of the samples led to a superior mechanical response compared to that achieved by Rapid Pressure-less Sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.