Abstract

The objective of this study is to explore how to stimulate soil indigenous bacteria for the degradation of long-chain crude oil by adding fermented food waste supernatant (FS). Four concentrations of FS (0 mL, 0.1 mL, 1 mL, and 3 mL) were added to two oil-contaminated soils S1 and S2 for 30 days of bioremediation experiments. The results showed that the biodegradation of long-chain alkanes (C29 - C24) could reach up to 1756 mg/kg (49.3%, S1) and 3937 mg/kg (43.9%, S2), which were 3.1 and 3.2 times that of the non-nutrient system. In addition, the logarithmic growth rate of the indigenous hydrocarbon degraders (IHD) reached 41.5%. The long-chain crude oil can be rapidly degraded by indigenous bacteria with FS added in a short time. The glucose and acetic acid accelerated the consumption of ammonia nitrogen (NH4+-N) in the prophase of bioremediation and the molar ratio of consumed carbon (contained in glucose and acetic acid) to consumed NH4+-N (C/N) was high by adding FS. Thus, the IHD can multiply rapidly. The analysis of microbial diversity revealed that the IHD (genera Acinetobacter and Aquabacterium) became the dominant bacteria. Long-chain alkanes became the main carbon sources for IHD after 14 days in soil S1 and 16 days in soil S2. Thus, the rapid biodegradation of long-chain crude oil was achieved. The genus Aquabacterium which was uncultivable on crude oil medium became the dominant bacteria. This study provides an environment-friendly and sustainable remediation technology for bioremediation of oil-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call