Abstract

The RNA chaperone Hfq in bacteria stabilizes sRNAs by protecting them from the attack of ribonucleases. Upon release from Hfq, sRNAs are preferably degraded by PNPase. PNPase usually forms multienzyme ribonucleolytic complexes with endoribonuclease E and/or RNA helicase RhlB to facilitate the degradation of the structured RNA. However, whether PNPase activity on Hfq-free sRNAs is associated with the assembly of RNase E or RhlB has yet to be determined. Here we examined the roles of the main endoribonucleases, exoribonucleases, and ancillary RNA-modifying enzymes in the degradation of Y. pestis RyhB in the absence of Hfq. Expectedly, the transcript levels of both RyhB1 and RyhB2 increase only after inactivating PNPase, which confirms the importance of PNPase in sRNA degradation. By contrast, the signal of RyhB becomes barely perceptible after inactivating of RNase III, which may be explained by the increase in PNPase levels resulting from the exemption of pnp mRNA from RNase III processing. No significant changes are observed in RyhB stability after deletion of either the PNPase-binding domain of RNase E or rhlB. Therefore, PNPase acts as a major enzyme of RyhB degradation independent of PNPase-containing RNase E and RhlB assembly in the absence of Hfq.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.